«

»

Oct 10

Print this Post

EFFECT OF DIELECTRIC IN A CAPACITOR

The capacitance of a parallel plate capacitor without any medium between its plates is given by C_{0}=\frac{\varepsilon _{0}A}{d}

When a dielectric completely fills the space between the plates of the capacitor, the capacitance increases K times, where K is the dielectric constant (relative permitivity) of the dielectric.

C_{m}=\frac{K\varepsilon _{0}A}{d}

If a dielectric slab of thickness t (<d) is introduced between the plates, the capacitance becomes C=\frac{\varepsilon _{0}A}{d-t\left ( 1-\frac{1}{K} \right )}

OR

C=\frac{\varepsilon _{0}A}{d\left \{ \frac{t}{d}\left ( 1-\frac{1}{K} \right ) \right \}}

OR

C=\frac{C_{0}}{\frac{t}{d}\left ( 1-\frac{1}{K} \right )}

In each case the capacitance increases with the introduction of a dielectric in between the plates

http://teacher.pas.rochester.edu/phy122/Lecture_Notes/Chapter27/chapter27.html

Permanent link to this article: http://www.plustwophysics.com/effect-of-dielectric-in-a-capacitor/

%d bloggers like this: