1. a) Linear momentum : \(mv = [MLT^{-1}]\)

b) Frequency : \(\frac{1}{T} = [M^0L^0T^{-1}]\)

c) Pressure : \(\frac{\text{Force}}{\text{Area}} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]\)

2. a) Angular speed \(\omega = \frac{\theta}{t} = [M^0L^0T^{-1}]\)

b) Angular acceleration \(\alpha = \frac{\omega}{t} = \frac{M^0L^0T^{-2}}{T} = [M^0L^0T^{-2}]\)

c) Torque \(\tau = Fr = [MLT^{-2}]\ [L] = [ML^2T^{-2}]\)

d) Moment of inertia = \(Mr^2 = [M] [L^2] = [ML^2T^{-2}]\)

3. a) Electric field \(E = \frac{F}{q} = [MLT^{-2}]\)

b) Magnetic field \(B = \frac{F}{qv} = \frac{[MLT^{-2}]}{[L][T][L^{-1}]} = [MT^{-1}]\)

c) Magnetic permeability \(\mu_0 = \frac{B \times 2\pi}{I} = \frac{MT^{-2}I^{-1}}{[I]} = [MLT^{-2}I^{-1}]\)

4. a) Electric dipole moment \(P = qI = [IT] \times [L] = [LTI]\)

b) Magnetic dipole moment \(M = IA = [I] [L^2] = [L^2I]\)

5. \(E = \hbar \nu\) where \(E = \text{energy and } \nu = \text{frequency.}\)

6. a) Specific heat capacity \(C = \frac{\Delta Q}{m\Delta T} = \frac{[ML^2T^{-2}]}{[M][K]} = [L^2T^{-2}K^{-1}]\)

b) Coefficient of linear expansion \(\alpha = \frac{L_1 - L_2}{L_0\Delta T} = \frac{[L]}{[L][K]} = [K^{-1}]\)

c) Gas constant \(R = \frac{PV}{nT} = \frac{[ML^{-1}T^{-2}][L^3]}{[K][mol]} = [ML^2T^{-2}K^{-1}(mol)^{-1}]\)

7. Taking force, length and time as fundamental quantity

a) Density \(= \frac{m}{V} = \frac{\text{mass}}{\text{volume}} = \frac{[F/LT^{-2}]}{[L^3]} = \frac{F}{L^4T^{-2}} = [FL^{-4}T^{-2}]\)

b) Pressure = \(\frac{F}{A} = \frac{F}{L^2} = [FL^{-2}]\)

c) Momentum = \(mv = \text{(force/acceleration)} \times \text{velocity} = \frac{[F/LT^{-2}]}{[LT^{-1}]} = [FT]\)

d) Energy = \(\frac{1}{2}mv^2 = \frac{\text{force}}{\text{acceleration}} \times (\text{velocity})^2 = \left[\frac{F}{LT^{-2}}\right] \times [LT^{-1}]^2 = \left[\frac{F}{LT^{-2}}\right] \times [L^2T^{-2}] = [FL]\)

8. \(g = 10 \frac{\text{metres}}{\text{sec}^2} = 36 \times 10^5 \text{ cm/min}^2\)

9. The average speed of a snail is 0.02 mile/hr

Converting to S.I. units, \(\frac{0.02 \times 1.6 \times 1000}{3600} = 0.0089 \text{ m/s}^{-1}\)

The average speed of leopard = 70 miles/hr

In SI units = \(\frac{70 \times 1.6 \times 1000}{3600} = 31 \text{ m/s}\)
10. Height $h = 75$ cm, Density of mercury = 13600 kg/m3, $g = 9.8$ ms$^{-2}$ then

Pressure $= hf = 10 \times 10^4$ N/m2 (approximately)

In C.G.S. Units, $P = 10 \times 10^6$ dyne/cm2

11. In S.I. unit 100 watt = 100 Joule/sec

In C.G.S. Unit = 10×10^5 erg/sec

12. 1 micro century = $10^5 \times 100$ years = $10^{-4} \times 365 \times 24 \times 60$ min

So, 100 min = $10^5 / 52560 = 1.9$ microcentury

13. Surface tension of water = 72 dyne/cm

In S.I. Unit, 72 dyne/cm = 0.072 N/m

14. \[K = kI^a \omega^b \] where $k = \text{Kinetic energy of rotating body and } k = \text{dimensionless constant}$

Dimensions of left side are,

$K = [ML^2T^{-2}]$

Dimensions of right side are,

$I^a = [ML^2]^a, \omega^b = [T^{-1}]^b$

According to principle of homogeneity of dimension,

$[ML^2T^{-2}] = [ML^2T^{-2}] [T^{-1}]^b$

Equating the dimension of both sides,

$2 = 2a$ and $-2 = -b$ \(\Rightarrow a = 1\) and $b = 2$

15. Let energy $E \propto M^aC^b$ where $M = \text{Mass, } C = \text{speed of light}$

\(\Rightarrow E = KM^aC^b\) (K = proportionality constant)

Dimension of left side

$E = [ML^2T^{-2}]$

Dimension of right side

$M^a = [M]^a, [C]^b = [LT^{-1}]^b$

\(\therefore [ML^2T^{-2}] = [ML]^a[L^{-1}]^b\)

\(\Rightarrow a = 1; b = 2\)

So, the relation is $E = KM^aC^b$

16. Dimensional formulae of $R = [ML^2T^{-3}I^{-1}]$

Dimensional formulae of $V = [ML^2T^3I^1]$

Dimensional formulae of $I = [I]$

\(\therefore [ML^2T^{-3}I^{-1}] = [ML^2T^3I^1] [I]\)

\(\Rightarrow V = IR\)

17. Frequency $f = KL^aF^bM^c$ $M = \text{Mass/unit length, } L = \text{length, } F = \text{tension (force)}$

Dimension of $f = [T^{-1}]$

Dimension of right side,

$L^a = [L^a], F^b = [MLT^{-2}]^b, M^c = [ML^{-1}]^c$

\(\therefore [T^{-1}] = K[L]^a[MLT^{-2}]^b[ML^{-1}]^c\)

$M^0L^0T^{-1} = KM^{b+c}L^{a+b-c}T^{-2b}$

Equating the dimensions of both sides,

\(\therefore b + c = 0 \quad \ldots(1)\)

$-c + a + b = 0 \quad \ldots(2)$

$-2b = -1 \quad \ldots(3)$

Solving the equations we get,

$a = -1, b = 1/2$ and $c = -1/2$

\(\therefore \text{So, frequency } f = KL^{-1}F^{1/2}M^{-1/2} = \frac{K}{L}F^{1/2}M^{-1/2} = \frac{K}{L} = \sqrt{\frac{F}{M}}\)
18. a) \(h = \frac{2SC\cos\theta}{\rho g} \)

LHS = [L]

Surface tension = \(S = \frac{F}{L} = \frac{MLT^{-2}}{L} = [MT^{-2}] \)

Density = \(\rho = \frac{M}{V} = [ML^{-3}T^0] \)

Radius = \(r = [L] \), \(g = [LT^{-2}] \)

RHS = \(\frac{2SC\cos\theta}{\rho g} = \frac{[MT^{-2}]}{[ML^{-3}T^0][L][LT^{-2}]} = [M^0L^0T^0] = [L] \)

LHS = RHS
So, the relation is correct.

b) \(v = \sqrt{\frac{p}{\rho}} \) where \(v \) = velocity

LHS = Dimension of \(v = [LT^{-1}] \)

Dimension of \(p = F/A = [ML^{-1}T^{-2}] \)

Dimension of \(\rho = m/V = [ML^{-3}] \)

RHS = \(\sqrt{\frac{p}{\rho}} = \sqrt{\frac{[ML^{-1}T^{-2}]}{[ML^{-3}]}} = [L^2T^{-1}]^{1/2} = [LT^{-1}] \)

So, the relation is correct.

c) \(V = \frac{\pi pr^4t}{8\eta l} \)

LHS = Dimension of \(V = [L^3] \)

Dimension of \(p = [ML^{-1}T^{-2}] \), \(r^4 = [L^4] \), \(t = [T] \)

Coefficient of viscosity = \([ML^{-1}T^{-1}] \)

RHS = \(\frac{\pi pr^4t}{8\eta l} = \frac{[ML^{-1}T^{-2}][L^4][T]}{[ML^{-1}T^{-1}][L]} \)

So, the relation is correct.

d) \(v = \frac{1}{2\pi} \sqrt{\frac{mg}{l}} \)

LHS = Dimension of \(v = [T^{-1}] \)

RHS = \(\sqrt{\frac{mg}{l}} = \sqrt{\frac{[ML][L^2]}{[ML^2]}} = [T^{-1}] \)

LHS = RHS
So, the relation is correct.

19. Dimension of the left side = \(\int \frac{dx}{\sqrt{a^2 - x^2}} = \int \frac{L}{\sqrt{(L^2 - L^2)}} = [L^0] \)

Dimension of the right side = \(\frac{1}{a} \sin^{-1}\left(\frac{a}{x}\right) = [L^{-1}] \)

So, the dimension of \(\int \frac{dx}{\sqrt{a^2 - x^2}} \neq \frac{1}{a} \sin^{-1}\left(\frac{a}{x}\right) \)

So, the equation is dimensionally incorrect.
Important Dimensions and Units:

<table>
<thead>
<tr>
<th>Physical quantity</th>
<th>Dimension</th>
<th>SI unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force (F)</td>
<td>[M L T^{-2}]</td>
<td>newton</td>
</tr>
<tr>
<td>Work (W)</td>
<td>[M L^2 T^{-2}]</td>
<td>joule</td>
</tr>
<tr>
<td>Power (P)</td>
<td>[M L^2 T^{-3}]</td>
<td>watt</td>
</tr>
<tr>
<td>Gravitational constant (G)</td>
<td>[M^{-1} L^3 T^{-2}]</td>
<td>N-m^2/kg^2</td>
</tr>
<tr>
<td>Angular velocity (ω)</td>
<td>[T^{-1}]</td>
<td>radian/s</td>
</tr>
<tr>
<td>Angular momentum (L)</td>
<td>[M L^2 T^{-1}]</td>
<td>kg m^2/s</td>
</tr>
<tr>
<td>Moment of inertia (I)</td>
<td>[M L^2]</td>
<td>kg m^2</td>
</tr>
<tr>
<td>Torque (τ)</td>
<td>[M L^2 T^{-2}]</td>
<td>N-m</td>
</tr>
<tr>
<td>Young's modulus (Y)</td>
<td>[M L^{-1} T^{-2}]</td>
<td>N/m^2</td>
</tr>
<tr>
<td>Surface Tension (S)</td>
<td>[M T^{-2}]</td>
<td>N/m</td>
</tr>
<tr>
<td>Coefficient of viscosity (η)</td>
<td>[M L^{-1} T^{-1}]</td>
<td>N-s/m^2</td>
</tr>
<tr>
<td>Pressure (p)</td>
<td>[M L^{-1} T^{-2}]</td>
<td>N/m^2 (Pascal)</td>
</tr>
<tr>
<td>Intensity of wave (I)</td>
<td>[M T^{-3}]</td>
<td>watt/m^2</td>
</tr>
<tr>
<td>Specific heat capacity (c)</td>
<td>[L^2 T^{-2} K^{-1}]</td>
<td>J/kg-K</td>
</tr>
<tr>
<td>Stefan’s constant (σ)</td>
<td>[M T^{-3} K^{-4}]</td>
<td>watt/m^2 K^{-4}</td>
</tr>
<tr>
<td>Thermal conductivity (k)</td>
<td>[M L T^{-3} K^{-1}]</td>
<td>watt/m-K</td>
</tr>
<tr>
<td>Current density (j)</td>
<td>[I L^{-2}]</td>
<td>ampere/m^2</td>
</tr>
<tr>
<td>Electrical conductivity (σ)</td>
<td>[I^2 T^{-1} M^{-1} L^{-3}]</td>
<td>Ω^{-1} m^{-1}</td>
</tr>
<tr>
<td>Electric dipole moment (p)</td>
<td>[I L^1 T^{-1}]</td>
<td>C-m</td>
</tr>
<tr>
<td>Electric field (E)</td>
<td>[M L^{-1} T^{-3}]</td>
<td>V/m</td>
</tr>
<tr>
<td>Electrical potential (V)</td>
<td>[M L^2 T^{-3}]</td>
<td>volt</td>
</tr>
<tr>
<td>Electric flux (ψ)</td>
<td>[M L^1 T^{-3}]</td>
<td>volt/m</td>
</tr>
<tr>
<td>Capacitance (C)</td>
<td>[I^2 T^{-1} M^{-1} L^{-2}]</td>
<td>farad (F)</td>
</tr>
<tr>
<td>Permittivity (ε)</td>
<td>[I^2 T^{-1} M^{-1} L^{-3}]</td>
<td>C^2/N-m^2</td>
</tr>
<tr>
<td>Permeability (µ)</td>
<td>[M L^{-1} T^{-3}]</td>
<td>Newton/A^2</td>
</tr>
<tr>
<td>Magnetic dipole moment (M)</td>
<td>[I L^2]</td>
<td>N-m/T</td>
</tr>
<tr>
<td>Magnetic flux (φ)</td>
<td>[M L^2 T^{-2}]</td>
<td>Weber (Wb)</td>
</tr>
<tr>
<td>Magnetic field (B)</td>
<td>[M T^{-2}]</td>
<td>tesla</td>
</tr>
<tr>
<td>Inductance (L)</td>
<td>[M L^2 T^{-2}]</td>
<td>henry</td>
</tr>
<tr>
<td>Resistance (R)</td>
<td>[M L^2 T^{-3}]</td>
<td>ohm (Ω)</td>
</tr>
</tbody>
</table>